
Parallel Algorithms for Collective Processes
 in High Intensity Rings

Andrei Shishlo, Jeff Holmes, and Viatcheslav Danilov
 Oak Ridge National Laboratory, SNS Project, 701 Scarboro Rd, MS-6473, Oak Ridge TN,

USA 37830
{shishlo, vux, jzh}@sns.gov

Abstract. Computational three-dimensional space charge (3DSC) and wake
field force algorithms were developed and implemented into the ORBIT
computer code to simulate the dynamics of present and planned high intensity
rings, such as PSR, Fermilab Booster, AGS Booster, Spallation Neutron
Source (SNS), and proton driver. To provide affordable simulation times, the
3DSC algorithm developed for ORBIT has been parallelized and imple-
mented as a separate module into the UAL 1.0 library, which supports a par-
allel environment based on MPI. The details of these algorithms and their
parallel implementation are presented, and results demonstrating the scaling
with problem size and number of processors are discussed.

1 Introduction

Collective beam dynamics will play a major role in determining losses in high inten-
sity rings. The details of these processes are so complicated that a good understand-
ing of the underlying physics will require careful computer modeling. In order to
study the dynamics of high intensity rings, a task essential to the SNS project [1], we
have developed direct space charge and impedance models in the macro-particle
tracking computer code, ORBIT [2,3]. Initially, separate transverse space charge and
longitudinal space charge/impedance models were developed, benchmarked, and ap-
plied to a number of problems [4,5]. We have now extended the impedance model to
include the calculation of forces due to transverse impedances and, because such
forces depend on the longitudinal variation of the beam dipole moments, the space
charge model has been extended to three dimensions. In many cases, the resulting
simulations including 3DSC calculations will require tracking tens of millions of in-
teracting macro-particles for thousands of turns, which constitutes a legitimate high
performance computing problem. There is little hope of carrying out such calcula-
tions in a single processor environment. In order to meet the need for credible simu-
lations of collective processes in high intensity rings, we have developed and imple-
mented the parallel algorithms for the calculation of these processes1.

1.1 Parallel algorithms

The main goals of parallel computer simulations are to shorten the tracking time and
to provide for the treatment of larger problems. There are two possible situations for

1 Research on the Spallation Neutron Source is managed by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 for the U.S. Department of Energy.

tracking large numbers of particles with macro-particle tracking codes such as
ORBIT. In the first case, particles are propagated through the accelerator structure
independently without taking into account direct or indirect interactions among them,
so there is no necessity for parallel programming. It is possible to run independent
calculations using the same program with different macro-particles on different CPUs
and to carry out the post-processing data analysis independently. In the opposite case
there are collective processes, and we must provide communication between the
CPUs where programs are running. Unfortunately, there is no universal efficient par-
allel algorithm that can provide communication for every type of collective processes.
The best parallel flow logic will be defined by the mathematical approach describing
the particular process and the ratio between computational and communication band-
width. Therefore, our solutions for parallel algorithms cannot be optimal for every
computational system.

Our implementation of parallel algorithms utilizes the Message-Passing Interface
(MPI) library. The timing analysis has been carried out on the SNS Linux work-
station cluster including six dual i586 CPUs with each having 512 kBytes L2 cache,
512 MB RAM and the 100 Mb/s Fast Ethernet switch for communication. The com-
munication library MPICH version 1.2.1, a portable implementation of MPI, has been
installed under the Red Hat 7.0 Linux operating system.

2 Transverse Impedance Model

The transverse impedance model in ORBIT [3] is based on an approach previously
implemented in the longitudinal impedance model [5], which calculates the longitudi-
nal kick by summing products of Fourier coefficients of the current with the corre-
sponding impedance values, all taken at harmonics of the ring frequency [6]. A com-
plication with the transverse impedance model arises due to the betatron motion,
which has much higher frequency than synchrotron motion. Consequently, the har-
monics of the dipole current must include the betatron sidebands of the revolution
harmonics. Because of this and the fact that the number of transverse dimensions is
two, the transverse impedance model requires four times as many arrays and calcula-
tions as does the longitudinal impedance. In the transverse impedance model, the
kicks are taken to be delta-functions. This approximation is valid when the betatron
phase advance over the physical extent of the impedance is small. If this is not the
case, the impedance must be represented as a number of short elements, which is
valid when the communication between elements is negligible. One exception to this
rule is the resistive wall impedance. Because the resistive wake does not involve
propagating waves, it can be treated as localized away from synchrobetatron reso-
nances. When communication between elements is significant, then a more general
Green’s function approach, which is beyond the scope of this model, must be used.

2.1 Parallel Algorithm for Transverse Impedance Model

The parallel algorithm for ORBIT’s transverse impedance model has been developed
assuming that propagated macro-particles are arbitrarily distributed among CPUs.
Typically, we must consider only a few transverse impedance elements in the accel-

erator lattice, and the resulting calculation time is small. Consequently, we derive this
algorithm more for simplicity than for efficiency.

The parallel flow logic for the transverse impedance model is shown in Table 1.
There are only two stages of calculation in which data is exchanged between CPUs.
In the first stage the maximal and minimal longitudinal coordinates of all macro-
particles must be determined. We used the MPI_Allreduce Collective Communica-
tion MPI function with the MPI_MAX parameter describing MPI-operation to find
maximal and minimal values of the longitudinal coordinates for all CPUs. In the 5-th
step we sum the array of transverse kick values for all CPUs and scatter results to all
the processors by using the same MPI function with the MPI_SUM parameter.

Table 1. The parallel flow logic for the transverse impedance model. The “Commu-

nication” column indicates data exchange between CPUs
N step Actions Communication
1 Determine the extrema of longitudinal macro-particle

coordinates and construct longitudinal grids for x and y
dimensions

+

2 Distribute and accumulate the macro-particle transverse
dipole moments for each direction onto the longitudinal
grids

-

3 Calculate FFT values of total dipole moments in the
mesh

-

4 Convolute the FFT coefficients with transverse imped-
ance values to get transverse kick at each point in the
longitudinal grids

-

5 Sum all transverse kicks across all CPUs +
6 Apply resulting transverse kick to every macro-particle -

A thorough timing of the transverse impedance parallel implementation was not
made, because there are only a few impedance elements among several hundreds of
elements in a typical case and their calculation consumes very little time. There is
only one requirement, namely, the single processor version and the parallel version
must give the same results. We have verified that this is the case to at least six sig-
nificant figures in the coordinates of macro-particles for both codes.

3 Three-Dimensional Space Charge Model

The force in our three-dimensional space charge model is calculated as the derivative
of a potential, both for longitudinal and transverse components. The potential is
solved as a sequence of two-dimensional transverse problems, one for each fixed
longitudinal coordinate. These separate solutions are tied together in the longitudinal
direction by a conducting wall boundary condition 0=Φ on the beam pipe, thus
resulting in a three-dimensional potential. This method depends for its legitimacy,
especially in the calculation of the longitudinal force, on the assumptions that the
bunch length is much greater than the transverse beam pipe size and that the beam
pipe shields out the forces from longitudinally distant particles. Although our model

is applicable to long bunches, and not to the spherical bunches of interest in many
linac calculations, the three-dimensional space charge model adopted here is adequate
to most calculations in rings.

The three-dimensional model implemented in ORBIT closely follows a method
discussed by Hockney and Eastwood [7]. A three-dimensional rectangular grid, uni-
form in each direction, in the two transverse dimensions and in the longitudinal coor-
dinate is used. The actual charge distribution is approximated on the grid by distribut-
ing the particles over the grid points according to a second order algorithm, called
“triangular shaped cloud (TSC)” in [7]. Then, the potential is calculated independ-
ently on each transverse grid slice, corresponding to fixed longitudinal coordinate
value, as a solution of a two-dimensional Poisson’s equation. The charge distribution
is taken from the distribution procedure and, for the two-dimensional equation, is
treated as a line charge distribution. The two-dimensional Poisson equation for the
potential is then solved using fast Fourier transforms and a Green’s function formula-
tion with periodic boundary conditions [8]. The periodic boundary conditions are
used only to obtain an interim solution, and this solution is then adjusted to obey the
desired conducting wall boundary conditions. These are imposed on a specified cir-
cular, elliptical, or rectangular beam pipe through a least squares minimization of the
difference on the beam pipe between the periodic Poisson equation solution and a
superposed homogeneous solution. The homogeneous solution is represented as a
series constructed from a complete set of Laplace equation solutions with variable
coefficients, as described in [9]. In addition to accounting for image forces from the
beam pipe, these 0=Φ boundary conditions serve to tie together the independently
solved potentials from the various longitudinal slices, resulting in a self-consistent
three-dimensional potential.

Finally, with the potentials determined over the three-dimensional grid, the forces
on each macro-particle are obtained by differentiating the potential at the location of
the macro-particle using a second order interpolation scheme. The resulting forces
include both the transverse and longitudinal components. The interpolating function
for the potential is the same TSC function used to distribute the charge.

The detailed description of the three-dimensional space charge algorithm can be
found in [10].

4 Parallel Algorithm for the 3D Space Charge Model

The approach to parallelization of the three-dimensional space charge algorithm is
obvious. We distribute the two-dimensional space charge problems for solution to
different CPUs. If the number of longitudinal slices is greater than the number of
CPUs, then we must group the slices. To implement this scheme it is necessary to
distribute the macro-particles among the CPUs before the solving two-dimensional
problems. Then, after solving the two-dimensional problems, we must provide for the
exchange of neighboring transverse grids (with potentials) between CPUs to carry out
the second order interpolation scheme in the longitudinal coordinate necessary for
calculating and applying the space charge force kick to the macro-particles. There-
fore there should be a special module that distributes macro-particles between CPUs
according their longitudinal positions. We call this module “The Bunch Distributor”.

4.1 The Bunch Distributor Module

The “Bunch Distributor” module analyzes the longitudinal coordinates of macro-
particles currently residing on the local CPU, determines which macro-particles don’t
belong to this particular CPU, and sends them to the right CPU. This means that the
class describing the macro-particle bunch should be a resizable container including
6D coordinates of the macro-particle and an additional flag indicating macro-particles
as “alive” or “dead”. This additional flag provides the possibility to have spare space
in the container and to avoid changing the size of container frequently.

The logic flow for the bunch distributor module is shown in Table 2. During the
two first steps we define maximum and minimum longitudinal coordinates among all
macro-particles in all CPUs. To eliminate the necessity of frequent changes in the
longitudinal grid we add an additional 5% to each limit and save the result. During
subsequent calls of the “Bunch Distributor” module we don’t change the longitudinal
limits unless necessary.

After defining the longitudinal grid, we sort macro-particles according the nearest
grid point. Particles that no longer belong to the appropriate CPU are stored in an
intermediate buffer together with additional information about where they belong. At
the step 3 we define the exchange table Nex(i,j) where “i” is the index of the current
CPU, “j” is the index of destination CPU, and the value is the number of macro-
particles that should be sent from “i” to “j”. After step 4 all CPUs know the number
of macro-particles they will receive. The exchange table defines the sending and
receiving procedures used in step 6; therefore we avoid a deadlock. Finally, all
macro-particles are located in the correct CPUs, and we can start to solve the two-
dimensional space charge problems on all CPUs.

Table 2. The flow logic for the “Bunch Distributor” module. The “Communication”

column indicates data exchanging between CPUs
N stage Actions Communication
1 Determine the extrema of longitudinal macro-particle

coordinates
-

2 Find the global longitudinal limits throughout all CPUs +
3 Analyze macro-particle longitudinal coordinates to

determine on which CPU they belong. Storing the 6D
macro-particle coordinates to be exchanged in an in-
termediate buffer and mark these macro-particles as
“dead”. Define an exchange table Nex(i,j) (see text for
the explanation)

-

4 Sum the exchange table throughout all CPUs by using
the MPI_Allreduce MPI function with the MPI_SUM
operation parameter

+

5 Check the spare place in the bunch container and resize
it if necessary

-

6 Distribute the 6D macro-particle coordinates in the
intermediate buffer to the correct CPUs according the
exchange table. Store the received coordinates in the
bunch container in the available places

+

4.2 Parallel 3D Space Charge Algorithm

In the parallel version of the three-dimensional space charge algorithm each CPU
performs the same calculation of the potential on the transverse grids as the non-
parallel version. There is no need for communication between CPUs, because the
macro-particles have already been distributed between CPUs by the “Bunch Distribu-
tor” module and each CPU uses its own information to solve its own segment of the
longitudinal grid. There is only one difference between parallel and non-parallel ver-
sions: In the parallel version there are two additional longitudinal slices beyond the
ends of the CPU’s own segment. Therefore the number of longitudinal slices for one
CPU is Nslices/NCPU+2 instead of Nslices/NCPU, where Nslices is the total number of the
transverse grid and NCPU is the number of CPUs. The two additional slices are neces-
sary because of the second order interpolation scheme. After the solution of the two-
dimensional problems, the potential values from the two transverse grids on the ends
of the segment should be sent to the CPU that is the neighbor according its index. In
same fashion, the local CPU should obtain the potential values from its neighbors and
add these potentials to its own. In this case the results of the parallel and non-parallel
calculations will be the same.

5 Timing of Parallel Algorithm for the 3D Space Charge Model

Timings of the parallel algorithms were performed to elucidate the contributions of
different stages in the total time of calculation and the parallel efficiency of their im-
plementation. To avoid the effects of other jobs running on the same machine and
other random factors, we did the timings on the Linux cluster with no other users and
computed the average time for a number of iterations. We were able to use only five
CPUs of our cluster because of the dual CPU effect.

5.1 Dual CPU Effect

Using two CPUs on the one node for parallel calculations drops the performance of
our applications down by 20-30%. To clarify this situation we wrote a simple exam-
ple that does not use communication between CPUs.

The executable code of the example

01: double xx[50000];
02: double r_arr [50000];
…
03: time_start = MPI_Wtime();
04: for(int j = 0 ; j < 275 ; j++){
05: for (int i = 0; i < 50000 ; i++){
06: x = x/(x+0.000001);
07: r_arr[i] = x;
08: xx[i] = x;
09: }}
10: time_stop = MPI_Wtime();

The execution time of the example is 1 sec for 1 CPU and 1.7 sec for 2 CPUs on
the one dual CPU node. When we comment lines 07 and 08, the execution time does
not depend on the number and sort of CPU’s. This means that there is a competition
between two CPUs with synchronized tasks on the one node for the access to the
RAM if the 512 kBytes L2 cache of each CPU is not enough for data and code. To
avoid this type of competition and the resulting performance drop, we use no more
than 5 CPUs for each parallel run. This effect is significant for synchronized tasks
only, so we can run two different parallel simulations at one time.

5.2 Timing of the Bunch Distributor Module

The timing of the bunch distributor module was carried out without including addi-
tional MPI functions in the code of the module. We measured the time needed to
distribute macro-particles between CPUs according to their longitudinal positions
when we have Npart previously distributed and Nrand undistributed macro-particles.

Fig. 1. The time required by the bunch distributor module to distribute Nrand between 2 CPUs in
addition to Npart already distributed. The points are results of measurements, and the lines are
linear approximations. The squares and circles denote Npart = 20000 and 10000 macro-particles
accordingly.

Figure 1 shows the required time vs. Npart for 2 CPUs and Nrand = 20000 and
10000. As we expected, this time consists of two parts. The first part is proportional

0 1x105 2x105 3x105 4x105

0.1

0.2

0.3

t
,
se
c

N
part

to the number of previously distributed particles. This is the time require for carrying
out steps 1 and 3 in Table 2. The second part is proportional to the number of undis-
tributed macro-particles that are distributed among CPUs during the step 6. Step 5 is
normally carried out only once. The total execution time of steps 2 and 4 in Table 2
does not exceed 0.001 second for our case with NCPU < 6. If the number of CPUs is
large, for instance several tens, the execution time of step 4 could reduce the effi-
ciency. In this case the parallel algorithm should be improved by using the fact that,
for the long bunches found in rings, the macro-particles move very slowly along the
longitudinal axis and the data exchange will be only between neighboring CPUs.
This enables us to use the exchange table with 2 times NCPU size instead of NCPU times
NCPU. The analysis of graphs for several numbers of CPUs gives us the following
approximation for the distribution time

)/()1(/ 21 CPUCPUCPUpartCPUpartdist NNNNNNt ⋅−⋅⋅⋅+⋅= αττ (1)

where the parameters 1τ and 2τ are equal to 1.35E-6 and 12.5E-6 sec accordingly.
The parameter α in Eq. (1) is the fraction of macro-particles that have to be distrib-
uted. In our simulations α is between 0 and 1E-3. Equation (1) demonstrates full
scalability of this parallel algorithm.

5.3 Timing of the Parallel 3D SC Model

For timing the parallel implementation of the three-dimensional space charge model,
we used a procedure analogous to that described in the previous part of this report.
The calculation times were measured as a function of the number of macro-particles,
number of CPUs, and 3D grid size. Fitting the measurements, we obtained the fol-
lowing formula for the time of calculation with the (Nx x Ny) transverse grid size and
Nz longitudinal slices

)(/)(/ 433 yxcommCPUzyxCPUpartD NNNNNNNNt ⋅+⋅+⋅= τττ (2)

where the parameters 3τ , 4τ , and commτ are 3.3E-6, 3.8E-7, and 2.1E-6 sec, respec-
tively. The first term in the formula (2) describes the time spent binning the macro-
particles, applying the space charge kick, etc. The second term is the time required to
solve the set of two-dimensional space charge problems, and the last is the time for
communication and is proportional to the amount of exchanged data.

Equation (2) was obtained for a uniform distribution of macro-particles along
longitudinal axis. If the macro-particles are not distributed uniformly in the longitu-
dinal direction, we should use the maximum number of macro-particles on one CPU
instead of Npart/NCPU expression in Eq. (2).

5.4 Parallel Efficiency

Using Eqs. (1) and (2) we can define the parallel efficiency of the whole algorithm as
follows:

))(/())1()1((%100 33 DdistCPUCPUDCPUdist ttNNtNt +⋅=+=⋅=η (3)

For the cases of 64x64x64 grid, 200000 macro-particles, and 2,3,4, and 5 CPUs we
obtained 98.6, 98, 97, and 96 %, respectively. These results are for a uniform distribu-
tion of the macro-particles along the longitudinal direction. If we suppose that one
CPU contains 40% of all particles, instead of 20%, the parallel efficiency will be only
60%. To avoid this effect we should allocate the longitudinal slices between CPUs
irregularly to provide a homogeneous load on all CPUs. This means that we must
incorporate the timing results into the assignment of the longitudinal slices to the
CPUs.

5 Conclusions

Parallel algorithms of the transverse impedance and the three-dimensional space
charge models are developed. These algorithms provide close to 100% parallel effi-
ciency for uniform longitudinal distributions of macro-particles. For uneven distribu-
tions of particles, the algorithms should be changed to achieve even loading and op-
timal performance.

6 Acknowledgments

The authors wish to thank Mike Blaskiewicz, John Galambos, Alexei Fedotov, Niko-
lay Malitsky, and Jie Wei for many useful discussions and suggestions during this
investigation.

References

 1. National Spallation Neutron Source Conceptual Design Report, Volumes 1 and 2,

NSNS/CDR-2/V1, 2, (May, 1997)
 2. J. Galambos, J. Holmes, D. Olsen, A. Luccio, and J. Beebe-Wang, ORBIT Users Manual,

http://www.sns.gov//APGroup/Codes/Codes.htm
 3. V.Danilov, J. Galambos, and J. Holmes, in Proceedings of the 2001 Particle Accelerator

Conference, (Chicago, 2001)
 4. J. A. Holmes, V. V. Danilov, J. D. Galambos, D. Jeon, and D. K. Olsen, Phys. Rev. Special

Topics – AB 2, (1999) 114202
 5. K. Woody, J. A. Holmes, V. Danilov, and J. D. Galambos, in Proceedings of the 2001 Par-

ticle Accelerator Conference, (Chicago, 2001)
 6. J. A. MacLachlan, FNAL TechNote, FN-446, February (1987)
 7. R. W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles”, Institute of

Physics Publishing (Bristol: 1988)
 8. J.A. Holmes, J. D. Galambos, D. Jeon, D. K. Olsen, J. W. Cobb, M. Blaskiewicz, A. U.

Luccio, and J. Beebe-Wang, Proceedings of International Computational Accelerator Phys-
ics Conference, (Monterey, CA, September 1998)

 9. F. W. Jones, in Proceedings of the 2000 European Particle Accelerator Conference, (Vi-
enna, 2000) 1381

10. J. Holmes and V.Danilov, “Beam dynamics with transverse impedances: a comparison of
analytic and simulated calculations”, submitted to Phys. Rev. Special Topics – AB

	References

